Benha University
Faculty of Engineering (Shoubra)
Electrical Engineering Department $1^{\text {st }}$ year Electrical Power

Computer Programming $2^{\text {nd }}$ Semester 2012/2013
Final Exam
Time: 3hr

Answer all the question:

1. Write the output of the given MATLAB commands:
(10 Marks)
(a) $\mathrm{B}=(0: 8) ; \mathrm{B}(10: 12)=\left[\begin{array}{ll}11 & 10 \\ 9\end{array}\right], \mathrm{B}(2: 3:$ end $), \mathrm{B}(7)=8, \mathrm{~B}(4: 6)=[888], \mathrm{B}(13)=9, \mathrm{~B}([1011])=[]$
(b) $\mathrm{a}=1: 12$; $\mathrm{A}=$ reshape $(\mathrm{a}, 3,4), \mathrm{A}(2,2: 4)=[203040]$, size(A$)$, length (A), size([]), $\mathrm{A}(:, 3)=[]$, $\mathrm{A}(1: 3,1: 2)=8,[\mathrm{i}, \mathrm{j}]=\mathrm{find}(\mathrm{A}>=25), \mathrm{A} 1(1: 6)=\mathrm{A}(:, 2: 3)$
(c) $\mathrm{C}=\left[123 ; 45\right.$ 6; 78 9]; $\mathrm{D}=\mathrm{C}(3:-1: 1,1: 3), \mathrm{E}=[\mathrm{D} \mathrm{D}(:,[13])], \mathrm{F}=\mathrm{E}(1: 3,[135])$, $\mathrm{F}^{\prime}, \operatorname{diag}(\mathrm{D})$
2. (a)What are the function of the following MATLAB commands:
(10 Marks)
(i) randint, dbtype (ii) format long e, format short g, (iii) load, doc
(iv) flipud, tril (v) ishold, str2num
(b)Using the polynomials $A(x)=x^{3}-6 x-7, B(x)=x^{2}-2 x-6$. Write a MATLAB program to perform the following operations:

- $A(x)+B(x) \quad$ - $A(x) B(x) \quad$ - $\frac{A(x)}{B(x)} \quad$ • $\frac{d A(x)}{d x}$
- $\frac{d[A(x) B(x)]}{d x} \cdot \frac{d[A(x) / B(x)]}{d x}$
- The roots of each polynomial

Finally draw these polynomials for $\mathrm{x}=1: 10$ with step 0.001 then find the area under each curve.
(10 Marks)
3. A sinusoidal supply voltage of 100 v is applied on a parallel RLC circuit, Write a MATLAB Program ask the user to enter the values of the circuit parameters then sketch the current, voltages (v_{c}, v_{L}, v_{R}) and power (P_{c}, P_{L}, P_{R}) waveforms for t varies from 0 to 60 ms with step 0.01 ms . From the graphs determine the average and RMS values of the current also determine the average power dissipation across each element.

Dr: Mohamed Fathy

